PFAS Destruction Study Answers Critical Questions

About the Study

Our PFAS research study answers questions asked by many dealing with PFAS mitigation and removal: Can PFAS compounds effectively be removed to non-detect levels from spent carbon through Calgon’s reactivation process? And what is the fate of the PFAS once it is removed from the carbon?

To answer those questions, we proactively conducted a study at a full-scale manufacturing site on the removal of PFAS from spent activated carbon through the reactivation process. For decades, we have continually leveraged our internal engineers and scientists, along with external experts, to ensure our products and methods are tested and proven.

Testing is part of the company’s culture, and our technical experts regularly assist customers with testing and simulation to determine the optimal PFAS treatment configuration.

“I find that this research is really fulfilling and important, and I’m proud to have been a part of moving this topic forward, generating this data, getting this data out into the public. We’ve taken a huge step to setting the benchmark for the industry of what we know about PFAS destruction and reactivation of granular activated carbon.”

Rebecca DiStefano

Senior Applications Engineer, Calgon Carbon

Experts Choose Experts

Rebecca DiStefano, senior applications engineer at Calgon Carbon, discusses the research and third-party validation we proactively sought to highlight how the PFAS were removed from the carbon and achieved >99.99% destruction in our reactivation process.

Peer-Reviewed Research

Our test was able to show >99.99% destruction of the PFAS compounds through a high-temperature furnace and abatement system.

Once the results were verified, we approached the editors of Remediation-The Journal of Environmental Cleanup Costs, Technologies, & Techniques to submit an article on our research of the thermal destruction of PFAS during a full-scale reactivation of PFAS-laden granular activated carbon. This publication has previously published our research about whether carbon effectively removes short-chain PFAS.

The journal’s acceptance criteria rely on the quality and originality of the research and its significance to journal readership. Once its editorial team determines that the paper meets the appropriate quality and relevance, the submission then goes through a blind peer-review process to assure the quality and integrity of the research.

We chose this esteemed quarterly journal because of its focus on the practical applications of remediation techniques and technologies. Each issue of Remediation features articles by experts on such important issues as: evaluating the costs of uncertainty in risk assessment, determining how clean is clean, using bioremediation successfully and cost-effectively, negotiating remediation contracts, treating hazardous wastes, and understanding regulatory issues. The full article can be found here.